THE DYNAMIC LAYER

The Dynamic Layer

- The Dynamic Layer
- The Role of the Player

- The Dynamic Layer
- The Role of the Player
- Emergence

- The Dynamic Layer
- The Role of the Player
- Emergence
- Dynamic Mechanics

- The Dynamic Layer
- The Role of the Player
- Emergence
- Dynamic Mechanics
- Dynamic Aesthetics

- The Dynamic Layer
- The Role of the Player
- Emergence
- Dynamic Mechanics
- Dynamic Aesthetics
- Dynamic Narrative

- The Dynamic Layer
- The Role of the Player
- Emergence
- Dynamic Mechanics
- Dynamic Aesthetics
- Dynamic Narrative
- Dynamic Technology

The Dynamic Layer

The Dynamic Layer

Once players start actually playing a game, it moves from the Inscribed Layer into the Dynamic Layer of the Layered Tetrad.

The Dynamic Layer

Once players start actually playing a game, it moves from the Inscribed Layer into the Dynamic Layer of the Layered Tetrad.

Play, strategy, and meaningful player choices all emerge in this layer.

A game isn't a game unless someone is playing it

- A game isn't a game unless someone is playing it
 - Other forms of media still exist without an audience

- A game isn't a game unless someone is playing it
 - Other forms of media still exist without an audience
 - But a game is fundamentally altered by the participation of the player

- A game isn't a game unless someone is playing it
 - Other forms of media still exist without an audience
 - But a game is fundamentally altered by the participation of the player
 - Players move the game into the Dynamic Layer

Simple rules beget complex behavior

- Simple rules beget complex behavior
 - Even simple rules can have complex implications

- Simple rules beget complex behavior
 - Even simple rules can have complex implications
 - A tiny change to a rule can cause massive changes in these implications

- Simple rules beget complex behavior
 - Even simple rules can have complex implications
 - A tiny change to a rule can cause massive changes in these implications
 - "Change a number, and you change the game" Chris Swain

- Simple rules beget complex behavior
 - Even simple rules can have complex implications
 - A tiny change to a rule can cause massive changes in these implications
 - "Change a number, and you change the game" Chris Swain
- Unexpected mechanical emergence

- Simple rules beget complex behavior
 - Even simple rules can have complex implications
 - A tiny change to a rule can cause massive changes in these implications
 - "Change a number, and you change the game" Chris Swain
- Unexpected mechanical emergence
 - Sometimes unexpected dynamic mechanics will emerge from inscribed mechanical rules

- Simple rules beget complex behavior
 - Even simple rules can have complex implications
 - A tiny change to a rule can cause massive changes in these implications
 - "Change a number, and you change the game" Chris Swain
- Unexpected mechanical emergence
 - Sometimes unexpected dynamic mechanics will emerge from inscribed mechanical rules
 - The designer is responsible for knowing the range of emergent possibilities created by her rules

Simple rules beget complex behavior

- Even simple rules can have complex implications
- A tiny change to a rule can cause massive changes in these implications
- "Change a number, and you change the game" Chris Swain

Unexpected mechanical emergence

- Sometimes unexpected dynamic mechanics will emerge from inscribed mechanical rules
- The designer is responsible for knowing the range of emergent possibilities created by her rules
- Playtesting is a critical tool for helping the designer discover this range

Six aspects of Dynamic Mechanics

- Six aspects of Dynamic Mechanics
 - Procedures

- Six aspects of Dynamic Mechanics
 - Procedures
 - The actions taken by the players during the game

- Six aspects of Dynamic Mechanics
 - Procedures
 - The actions taken by the players during the game
 - Meaningful Play

- Six aspects of Dynamic Mechanics
 - Procedures
 - The actions taken by the players during the game
 - Meaningful Play
 - Are game actions discernible and integrated?

- Six aspects of Dynamic Mechanics
 - Procedures
 - The actions taken by the players during the game
 - Meaningful Play
 - Are game actions discernible and integrated?
 - Strategy

Six aspects of Dynamic Mechanics

- Procedures
 - The actions taken by the players during the game
- Meaningful Play
 - Are game actions discernible and integrated?
- Strategy
 - A calculated set of actions to help a player achieve her goal

Six aspects of Dynamic Mechanics

- Procedures
 - The actions taken by the players during the game
- Meaningful Play
 - Are game actions discernible and integrated?
- Strategy
 - A calculated set of actions to help a player achieve her goal
- House Rules

Six aspects of Dynamic Mechanics

Procedures

The actions taken by the players during the game

Meaningful Play

Are game actions discernible and integrated?

Strategy

A calculated set of actions to help a player achieve her goal

House Rules

Occur when players make small alterations to the inscribed rules

Six aspects of Dynamic Mechanics

Procedures

The actions taken by the players during the game

Meaningful Play

Are game actions discernible and integrated?

Strategy

A calculated set of actions to help a player achieve her goal

House Rules

Occur when players make small alterations to the inscribed rules

Player Intent

Six aspects of Dynamic Mechanics

Procedures

The actions taken by the players during the game

- Meaningful Play

Are game actions discernible and integrated?

Strategy

A calculated set of actions to help a player achieve her goal

House Rules

Occur when players make small alterations to the inscribed rules

Player Intent

What is each individual player's goal? How does it affect the game?

Six aspects of Dynamic Mechanics

Procedures

The actions taken by the players during the game

Meaningful Play

Are game actions discernible and integrated?

Strategy

A calculated set of actions to help a player achieve her goal

House Rules

Occur when players make small alterations to the inscribed rules

Player Intent

What is each individual player's goal? How does it affect the game?

Outcome

Six aspects of Dynamic Mechanics

Procedures

The actions taken by the players during the game

Meaningful Play

Are game actions discernible and integrated?

Strategy

A calculated set of actions to help a player achieve her goal

House Rules

Occur when players make small alterations to the inscribed rules

Player Intent

What is each individual player's goal? How does it affect the game?

Outcome

What is the result of playing the game?

Procedures

 Inscribed rules are instructions from the developers to players about how to play the game

- Inscribed rules are instructions from the developers to players about how to play the game
- Procedures are the actual actions taken by the players,
 which are prescribed by the rules

- Inscribed rules are instructions from the developers to players about how to play the game
- Procedures are the actual actions taken by the players,
 which are prescribed by the rules
- Examples:

- Inscribed rules are instructions from the developers to players about how to play the game
- Procedures are the actual actions taken by the players,
 which are prescribed by the rules
- Examples:
 - Passing GO and collecting \$200 in Monopoly

- Inscribed rules are instructions from the developers to players about how to play the game
- Procedures are the actual actions taken by the players,
 which are prescribed by the rules
- Examples:
 - Passing GO and collecting \$200 in Monopoly
 - Bluffing in Poker Though this is not specifically described in the rules of the game, it is a common procedure

Meaningful Play

 In Rules of Play, Katie Salen and Eric Zimmerman define "meaningful play" as actions that are both discernible and integrated

- In Rules of Play, Katie Salen and Eric Zimmerman define "meaningful play" as actions that are both discernible and integrated
- Discernible The player can tell that the game has reacted to her action

- In Rules of Play, Katie Salen and Eric Zimmerman define "meaningful play" as actions that are both discernible and integrated
- Discernible The player can tell that the game has reacted to her action
 - When I push the call button for an elevator, it lights up

- In Rules of Play, Katie Salen and Eric Zimmerman define "meaningful play" as actions that are both discernible and integrated
- Discernible The player can tell that the game has reacted to her action
 - When I push the call button for an elevator, it lights up
- Integrated The player knows that her action is affecting the overall outcome of the game

- In Rules of Play, Katie Salen and Eric Zimmerman define "meaningful play" as actions that are both discernible and integrated
- Discernible The player can tell that the game has reacted to her action
 - When I push the call button for an elevator, it lights up
- Integrated The player knows that her action is affecting the overall outcome of the game
 - Because I pushed the call button, the elevator will come to this floor

- In Rules of Play, Katie Salen and Eric Zimmerman define "meaningful play" as actions that are both discernible and integrated
- Discernible The player can tell that the game has reacted to her action
 - When I push the call button for an elevator, it lights up
- Integrated The player knows that her action is affecting the overall outcome of the game
 - Because I pushed the call button, the elevator will come to this floor
- If actions do not appear to the players to be meaningful, players can often lose interest in the game

Strategy

- Strategy
 - Plans made by the player to achieve her goal

- Strategy
 - Plans made by the player to achieve her goal
 - Her goal does not have to be winning the game

Strategy

- Plans made by the player to achieve her goal
 - Her goal does not have to be winning the game
 - When playing with a small child, many player's goal would be for the child to have fun

Strategy

- Plans made by the player to achieve her goal
 - Her goal does not have to be winning the game
 - When playing with a small child, many player's goal would be for the child to have fun
- Optimal Strategy

Strategy

- Plans made by the player to achieve her goal
 - Her goal does not have to be winning the game
 - When playing with a small child, many player's goal would be for the child to have fun

Optimal Strategy

 Some games are so simple that a single strategy has the highest likelihood of winning

Strategy

- Plans made by the player to achieve her goal
 - Her goal does not have to be winning the game
 - When playing with a small child, many player's goal would be for the child to have fun

Optimal Strategy

- Some games are so simple that a single strategy has the highest likelihood of winning
- Tic-Tac-Toe is so simple that chickens have been taught to play it and either win or draw every time

Strategy

- Plans made by the player to achieve her goal
 - Her goal does not have to be winning the game
 - When playing with a small child, many player's goal would be for the child to have fun

Optimal Strategy

- Some games are so simple that a single strategy has the highest likelihood of winning
- Tic-Tac-Toe is so simple that chickens have been taught to play it and either win or draw every time
- Most games are complex enough to not have a true optimal strategy

Strategy

- Plans made by the player to achieve her goal
 - Her goal does not have to be winning the game
 - When playing with a small child, many player's goal would be for the child to have fun

Optimal Strategy

- Some games are so simple that a single strategy has the highest likelihood of winning
- Tic-Tac-Toe is so simple that chickens have been taught to play it and either win or draw every time
- Most games are complex enough to not have a true optimal strategy
- Designing for Strategy

Strategy

Plans made by the player to achieve her goal

- Her goal does not have to be winning the game
 - When playing with a small child, many player's goal would be for the child to have fun

Optimal Strategy

- Some games are so simple that a single strategy has the highest likelihood of winning
- Tic-Tac-Toe is so simple that chickens have been taught to play it and either win or draw every time
- Most games are complex enough to not have a true optimal strategy

Designing for Strategy

Provide the player with multiple ways to win

Strategy

- Plans made by the player to achieve her goal

- Her goal does not have to be winning the game
 - When playing with a small child, many player's goal would be for the child to have fun

Optimal Strategy

- Some games are so simple that a single strategy has the highest likelihood of winning
- Tic-Tac-Toe is so simple that chickens have been taught to play it and either win or draw every time
- Most games are complex enough to not have a true optimal strategy

Designing for Strategy

- Provide the player with multiple ways to win
- Create relationships between these possible ways of winning

Strategy

Plans made by the player to achieve her goal

- Her goal does not have to be winning the game
 - When playing with a small child, many player's goal would be for the child to have fun

Optimal Strategy

- Some games are so simple that a single strategy has the highest likelihood of winning
- Tic-Tac-Toe is so simple that chickens have been taught to play it and either win or draw every time
- Most games are complex enough to not have a true optimal strategy

Designing for Strategy

- Provide the player with multiple ways to win
- Create relationships between these possible ways of winning
 - Make some complementary and others mutually exclusive

House Rules

- House Rules
 - Players make small modifications to the inscribed rules

House Rules

- Players make small modifications to the inscribed rules
- Most often happen in board and paper games

House Rules

- Players make small modifications to the inscribed rules
- Most often happen in board and paper games
- Can be intentional or unintentional

House Rules

- Players make small modifications to the inscribed rules
- Most often happen in board and paper games
- Can be intentional or unintentional
 - If your inscribed rules are unclear, players may unintentionally create house rules

House Rules

- Players make small modifications to the inscribed rules
- Most often happen in board and paper games
- Can be intentional or unintentional
 - If your inscribed rules are unclear, players may unintentionally create house rules
- Many player's first foray into game design!

Player Intent

 The dynamic game experience is shaped by the intents of the players in the game

- The dynamic game experience is shaped by the intents of the players in the game
- John Bartle's four types of players who suit MUDs

- The dynamic game experience is shaped by the intents of the players in the game
- John Bartle's four types of players who suit MUDs
 - Achiever (Diamond): Seeks to get the highest score in the game.
 Wants to dominate the game.

- The dynamic game experience is shaped by the intents of the players in the game
- John Bartle's four types of players who suit MUDs
 - Achiever (Diamond): Seeks to get the highest score in the game.
 Wants to dominate the game.
 - Explorer (Spade): Seeks to find all the hidden places in the game. Wants to understand the game.

- The dynamic game experience is shaped by the intents of the players in the game
- John Bartle's four types of players who suit MUDs
 - Achiever (Diamond): Seeks to get the highest score in the game.
 Wants to dominate the game.
 - Explorer (Spade): Seeks to find all the hidden places in the game. Wants to understand the game.
 - Socializer (Heart): Wants to play the game with friends. Wants to understand the other players.

- The dynamic game experience is shaped by the intents of the players in the game
- John Bartle's four types of players who suit MUDs
 - Achiever (Diamond): Seeks to get the highest score in the game.
 Wants to dominate the game.
 - Explorer (Spade): Seeks to find all the hidden places in the game. Wants to understand the game.
 - Socializer (Heart): Wants to play the game with friends. Wants to understand the other players.
 - Killer (Club): Wants to provoke other players of the game. Wants to dominate the other players.

Bartle's types in a 2x2 continuum

- The dynamic game experience is shaped by the intents of the players in the game
- John Bartle's four types of players who suit MUDs
 - Achiever (Diamond): Seeks to get the highest score in the game.
 Wants to dominate the game.
 - Explorer (Spade): Seeks to find all the hidden places in the game. Wants to understand the game.
 - Socializer (Heart): Wants to play the game with friends. Wants to understand the other players.
 - **Killer (Club):** Wants to provoke other players of the game. Wants to dominate the other players.
- Two types of players you don't want in your games

- The dynamic game experience is shaped by the intents of the players in the game
- John Bartle's four types of players who suit MUDs
 - Achiever (Diamond): Seeks to get the highest score in the game.
 Wants to dominate the game.
 - Explorer (Spade): Seeks to find all the hidden places in the game. Wants to understand the game.
 - Socializer (Heart): Wants to play the game with friends. Wants to understand the other players.
 - Killer (Club): Wants to provoke other players of the game. Wants to dominate the other players.
- Two types of players you don't want in your games
 - Cheater Wants to win. Doesn't care about integrity of the game.

- The dynamic game experience is shaped by the intents of the players in the game
- John Bartle's four types of players who suit MUDs
 - Achiever (Diamond): Seeks to get the highest score in the game.
 Wants to dominate the game.
 - Explorer (Spade): Seeks to find all the hidden places in the game. Wants to understand the game.
 - Socializer (Heart): Wants to play the game with friends. Wants to understand the other players.
 - Killer (Club): Wants to provoke other players of the game. Wants to dominate the other players.
- Two types of players you don't want in your games
 - Cheater Wants to win. Doesn't care about integrity of the game.
 - Spoilsport Doesn't care about winning. Wants to ruin game.

- Outcome
 - Multiple layers of outcome:

- Multiple layers of outcome:
 - Immediate The immediate result of each action in the game

- Multiple layers of outcome:
 - Immediate The immediate result of each action in the game
 - Quest The result of having completed or failed a quest

- Multiple layers of outcome:
 - Immediate The immediate result of each action in the game
 - Quest The result of having completed or failed a quest
 - Also often resolves a tiny narrative

- Multiple layers of outcome:
 - Immediate The immediate result of each action in the game
 - Quest The result of having completed or failed a quest
 - Also often resolves a tiny narrative
 - Cumulative The result of working toward a goal over time

- Multiple layers of outcome:
 - Immediate The immediate result of each action in the game
 - Quest The result of having completed or failed a quest
 - Also often resolves a tiny narrative
 - Cumulative The result of working toward a goal over time
 - Example: Gathering experience points until eventually leveling up

- Multiple layers of outcome:
 - Immediate The immediate result of each action in the game
 - Quest The result of having completed or failed a quest
 - Also often resolves a tiny narrative
 - Cumulative The result of working toward a goal over time
 - Example: Gathering experience points until eventually leveling up
 - Final The outcome that ends the game

- Multiple layers of outcome:
 - Immediate The immediate result of each action in the game
 - Quest The result of having completed or failed a quest
 - Also often resolves a tiny narrative
 - Cumulative The result of working toward a goal over time
 - Example: Gathering experience points until eventually leveling up
 - Final The outcome that ends the game
 - Death is often not a final outcome

- Multiple layers of outcome:
 - Immediate The immediate result of each action in the game
 - Quest The result of having completed or failed a quest
 - Also often resolves a tiny narrative
 - Cumulative The result of working toward a goal over time
 - Example: Gathering experience points until eventually leveling up
 - Final The outcome that ends the game
 - Death is often not a final outcome
 - Some games (like pen and paper RPGs) often lack a final outcome

Dynamic Aesthetics emerge when playing the game

- Dynamic Aesthetics emerge when playing the game
- Two main categories:

- Dynamic Aesthetics emerge when playing the game
- Two main categories:
 - Procedural Aesthetics

- Dynamic Aesthetics emerge when playing the game
- Two main categories:
 - Procedural Aesthetics
 - Aesthetics that are generated on the fly via programming

- Dynamic Aesthetics emerge when playing the game
- Two main categories:
 - Procedural Aesthetics
 - Aesthetics that are generated on the fly via programming
 - Environmental Aesthetics

- Dynamic Aesthetics emerge when playing the game
- Two main categories:
 - Procedural Aesthetics
 - Aesthetics that are generated on the fly via programming
 - Environmental Aesthetics
 - The aesthetics of the environment in which the game is played

Procedural Aesthetics

- Procedural Aesthetics
 - Combinations of technology and inscribed aesthetics

- Procedural Aesthetics
 - Combinations of technology and inscribed aesthetics
 - Audio Example: Procedural Music

- Procedural Aesthetics
 - Combinations of technology and inscribed aesthetics
 - Audio Example: Procedural Music
 - Three types:

- Procedural Aesthetics
 - Combinations of technology and inscribed aesthetics
 - Audio Example: Procedural Music
 - · Three types:
 - Horizontal Re-Sequencing Rearranges several precomposed sections of music

- Procedural Aesthetics
 - Combinations of technology and inscribed aesthetics
 - Audio Example: Procedural Music
 - Three types:
 - Horizontal Re-Sequencing Rearranges several precomposed sections of music
 - » Example: LucasArts' iMUSE system in X-Wing

- Procedural Aesthetics
 - Combinations of technology and inscribed aesthetics
 - Audio Example: Procedural Music
 - Three types:
 - Horizontal Re-Sequencing Rearranges several precomposed sections of music
 - » Example: LucasArts' iMUSE system in X-Wing
 - Vertical Re-Orchestration Various tracks of music are enabled or disabled to lend various voices to the music and change feel

- Procedural Aesthetics
 - Combinations of technology and inscribed aesthetics
 - Audio Example: Procedural Music
 - Three types:
 - Horizontal Re-Sequencing Rearranges several precomposed sections of music
 - » Example: LucasArts' iMUSE system in X-Wing
 - Vertical Re-Orchestration Various tracks of music are enabled or disabled to lend various voices to the music and change feel
 - » Examples: PaRappa the Rapper and Frequency

- Procedural Aesthetics
 - Combinations of technology and inscribed aesthetics
 - Audio Example: Procedural Music
 - · Three types:
 - Horizontal Re-Sequencing Rearranges several precomposed sections of music
 - » Example: LucasArts' iMUSE system in X-Wing
 - Vertical Re-Orchestration Various tracks of music are enabled or disabled to lend various voices to the music and change feel
 - » Examples: PaRappa the Rapper and Frequency
 - Procedural Composition Music is actually composed on the fly by the programming code based on the situation in the game

- Procedural Aesthetics
 - Combinations of technology and inscribed aesthetics
 - Audio Example: Procedural Music
 - Three types:
 - Horizontal Re-Sequencing Rearranges several precomposed sections of music
 - » Example: LucasArts' iMUSE system in X-Wing
 - Vertical Re-Orchestration Various tracks of music are enabled or disabled to lend various voices to the music and change feel
 - » Examples: PaRappa the Rapper and Frequency
 - Procedural Composition Music is actually composed on the fly by the programming code based on the situation in the game
 - » Examples: CPU Bach and the procedural music in Flower

- Procedural Aesthetics
 - Combinations of technology and inscribed aesthetics
 - Audio Example: Procedural Music
 - Visual Examples

- Procedural Aesthetics
 - Combinations of technology and inscribed aesthetics
 - Audio Example: Procedural Music
 - Visual Examples
 - Particle Systems Seen in almost every game

- Procedural Aesthetics
 - Combinations of technology and inscribed aesthetics
 - Audio Example: Procedural Music
 - Visual Examples
 - Particle Systems Seen in almost every game

- Procedural Aesthetics
 - Combinations of technology and inscribed aesthetics
 - Audio Example: Procedural Music
 - Visual Examples
 - Particle Systems Seen in almost every game
 - Procedural Animation Code moves or animates game elements

- Procedural Aesthetics
 - Combinations of technology and inscribed aesthetics
 - Audio Example: Procedural Music
 - Visual Examples
 - Particle Systems Seen in almost every game
 - Procedural Animation Code moves or animates game elements
 - Examples: Boids and the creatures in Spore

- Procedural Aesthetics
 - Combinations of technology and inscribed aesthetics
 - Audio Example: Procedural Music
 - Visual Examples
 - Particle Systems Seen in almost every game
 - Procedural Animation Code moves or animates game elements
 - Examples: Boids and the creatures in Spore

- Environmental Aesthetics
 - The play environment will always dynamically affect the gameplay experience

- Environmental Aesthetics
 - The play environment will always dynamically affect the gameplay experience
 - Visual Play Environment

- Environmental Aesthetics
 - The play environment will always dynamically affect the gameplay experience
 - Visual Play Environment
 - Brightness of the environment vs. screen

- Environmental Aesthetics
 - The play environment will always dynamically affect the gameplay experience
 - Visual Play Environment
 - Brightness of the environment vs. screen
 - Resolution of the player's screen

- Environmental Aesthetics
 - The play environment will always dynamically affect the gameplay experience
 - Visual Play Environment
 - Brightness of the environment vs. screen
 - Resolution of the player's screen
 - Auditory Play Environment

- The play environment will always dynamically affect the gameplay experience
- Visual Play Environment
 - Brightness of the environment vs. screen
 - Resolution of the player's screen
- Auditory Play Environment
 - Noisy environments

- The play environment will always dynamically affect the gameplay experience
- Visual Play Environment
 - Brightness of the environment vs. screen
 - Resolution of the player's screen
- Auditory Play Environment
 - Noisy environments
 - Players can lower or mute volume

- The play environment will always dynamically affect the gameplay experience
- Visual Play Environment
 - Brightness of the environment vs. screen
 - Resolution of the player's screen
- Auditory Play Environment
 - Noisy environments
 - Players can lower or mute volume
- Player Considerations

- The play environment will always dynamically affect the gameplay experience
- Visual Play Environment
 - Brightness of the environment vs. screen
 - Resolution of the player's screen
- Auditory Play Environment
 - Noisy environments
 - Players can lower or mute volume
- Player Considerations
 - Colorblindness 7-10% of men have a form of colorblindness

Environmental Aesthetics

- The play environment will always dynamically affect the gameplay experience
- Visual Play Environment
 - Brightness of the environment vs. screen
 - Resolution of the player's screen

- Auditory Play Environment

- Noisy environments
- Players can lower or mute volume

Player Considerations

- Colorblindness 7-10% of men have a form of colorblindness
- Epilepsy and Migraines Both can be caused by flashing or flickering images

Dynamic Narrative occurs as the game is played

- Dynamic Narrative occurs as the game is played
- Two major types

- Dynamic Narrative occurs as the game is played
- Two major types
 - Interactive Fiction An inscribed story that adapts to choices made by the player

- Dynamic Narrative occurs as the game is played
- Two major types
 - Interactive Fiction An inscribed story that adapts to choices made by the player
 - Emergent Narrative The player's story of her experience playing the game

 Interactive Fiction - An inscribed story that adapts to choices made by the player

- Interactive Fiction An inscribed story that adapts to choices made by the player
 - Janet Murray wrote about the nascent forms of interactive fiction in her book Hamlet on the Holodeck

- Interactive Fiction An inscribed story that adapts to choices made by the player
 - Janet Murray wrote about the nascent forms of interactive fiction in her book *Hamlet on the Holodeck*
 - IF is unique because it happens to the player

- Interactive Fiction An inscribed story that adapts to choices made by the player
 - Janet Murray wrote about the nascent forms of interactive fiction in her book Hamlet on the Holodeck
 - IF is unique because it happens to the player
 - From *Zork* (1979)

- Interactive Fiction An inscribed story that adapts to choices made by the player
 - Janet Murray wrote about the nascent forms of interactive fiction in her book Hamlet on the Holodeck
 - IF is unique because it happens to the player
 - From *Zork* (1979)

You [descend through the trap door into] a dark and damp cellar with a narrow passageway leading east and a crawlway to the south. To the west is the bottom of a steep metal ramp which is unclimbable.

The door crashes shut, and you hear someone barring it.

- Interactive Fiction An inscribed story that adapts to choices made by the player
 - Janet Murray wrote about the nascent forms of interactive fiction in her book Hamlet on the Holodeck
 - IF is unique because it happens to the player
 - From *Zork* (1979)

You [descend through the trap door into] a dark and damp cellar with a narrow passageway leading east and a crawlway to the south. To the west is the bottom of a steep metal ramp which is unclimbable.

The door crashes shut, and you hear someone barring it.

In IF relationships are developed through shared experience

- Interactive Fiction An inscribed story that adapts to choices made by the player
 - Janet Murray wrote about the nascent forms of interactive fiction in her book Hamlet on the Holodeck
 - IF is unique because it happens to the player
 - From *Zork* (1979)

You [descend through the trap door into] a dark and damp cellar with a narrow passageway leading east and a crawlway to the south. To the west is the bottom of a steep metal ramp which is unclimbable.

The door crashes shut, and you hear someone barring it.

- In IF relationships are developed through shared experience
 - This is also how relationships are developed in actual life

- Interactive Fiction An inscribed story that adapts to choices made by the player
 - Janet Murray wrote about the nascent forms of interactive fiction in her book *Hamlet on the Holodeck*
 - IF is unique because it happens to the player
 - From *Zork* (1979)

You [descend through the trap door into] a dark and damp cellar with a narrow passageway leading east and a crawlway to the south. To the west is the bottom of a steep metal ramp which is unclimbable.

The door crashes shut, and you hear someone barring it.

- In IF relationships are developed through shared experience
 - This is also how relationships are developed in actual life
 - Examples: *Planetfall* and *Ico*

 Emergent Narrative - The player's story of her experience playing the game

- Emergent Narrative The player's story of her experience playing the game
 - By playing games, players develop their own narratives

- Emergent Narrative The player's story of her experience playing the game
 - By playing games, players develop their own narratives
 - This is very common in pen & paper Roleplaying Games

- Emergent Narrative The player's story of her experience playing the game
 - By playing games, players develop their own narratives
 - This is very common in pen & paper Roleplaying Games
 - It is one of the major reasons that people play paper RPGs

- Emergent Narrative The player's story of her experience playing the game
 - By playing games, players develop their own narratives
 - This is very common in pen & paper Roleplaying Games
 - It is one of the major reasons that people play paper RPGs
 - In a paper RPG, a major job of the Game Master is to craft a compelling story for the players and to adapt the story to their needs, wants, and fears

- Emergent Narrative The player's story of her experience playing the game
 - By playing games, players develop their own narratives
 - This is very common in pen & paper Roleplaying Games
 - It is one of the major reasons that people play paper RPGs
 - In a paper RPG, a major job of the Game Master is to craft a compelling story for the players and to adapt the story to their needs, wants, and fears
 - Example: The story of the Balrog and the Rod of Splendor from the chapter

 The runtime, in-game behavior of both paper and digital technologies

- The runtime, in-game behavior of both paper and digital technologies
 - Paper Technologies

- The runtime, in-game behavior of both paper and digital technologies
 - Paper Technologies
 - The true behavior of paper technologies vs. their theoretical behavior

- The runtime, in-game behavior of both paper and digital technologies
 - Paper Technologies
 - The true behavior of paper technologies vs. their theoretical behavior
 - Example: In a certain game session, a six is rarely rolled on 2d6, even though probability states that 6 should be rolled in 5/36 rolls of 2d6

- The runtime, in-game behavior of both paper and digital technologies
 - Paper Technologies
 - The true behavior of paper technologies vs. their theoretical behavior
 - Example: In a certain game session, a six is rarely rolled on 2d6, even though probability states that 6 should be rolled in 5/36 rolls of 2d6
 - Chapter 11, "Math and Game Balance" covers probability

- The runtime, in-game behavior of both paper and digital technologies
 - Paper Technologies
 - The true behavior of paper technologies vs. their theoretical behavior
 - Example: In a certain game session, a six is rarely rolled on 2d6, even though probability states that 6 should be rolled in 5/36 rolls of 2d6
 - Chapter 11, "Math and Game Balance" covers probability
 - Digital Technologies

 The runtime, in-game behavior of both paper and digital technologies

Paper Technologies

- The true behavior of paper technologies vs. their theoretical behavior
- Example: In a certain game session, a six is rarely rolled on 2d6, even though probability states that 6 should be rolled in 5/36 rolls of 2d6
- Chapter 11, "Math and Game Balance" covers probability

Digital Technologies

• The execution of all computer code occurs in the dynamic layer

 The runtime, in-game behavior of both paper and digital technologies

Paper Technologies

- The true behavior of paper technologies vs. their theoretical behavior
- Example: In a certain game session, a six is rarely rolled on 2d6, even though probability states that 6 should be rolled in 5/36 rolls of 2d6
- Chapter 11, "Math and Game Balance" covers probability

- Digital Technologies

- The execution of all computer code occurs in the dynamic layer
- Includes:

The runtime, in-game behavior of both paper and digital technologies

Paper Technologies

- The true behavior of paper technologies vs. their theoretical behavior
- Example: In a certain game session, a six is rarely rolled on 2d6, even though probability states that 6 should be rolled in 5/36 rolls of 2d6
- Chapter 11, "Math and Game Balance" covers probability

Digital Technologies

- The execution of all computer code occurs in the dynamic layer
- Includes:
 - Strategies developed by technology: Artificial Intelligence

The runtime, in-game behavior of both paper and digital technologies

Paper Technologies

- The true behavior of paper technologies vs. their theoretical behavior
- Example: In a certain game session, a six is rarely rolled on 2d6, even though probability states that 6 should be rolled in 5/36 rolls of 2d6
- Chapter 11, "Math and Game Balance" covers probability

Digital Technologies

- The execution of all computer code occurs in the dynamic layer
- Includes:
 - Strategies developed by technology: Artificial Intelligence
 - Execution of any game code

The runtime, in-game behavior of both paper and digital technologies

Paper Technologies

- The true behavior of paper technologies vs. their theoretical behavior
- Example: In a certain game session, a six is rarely rolled on 2d6, even though probability states that 6 should be rolled in 5/36 rolls of 2d6
- Chapter 11, "Math and Game Balance" covers probability

Digital Technologies

- The execution of all computer code occurs in the dynamic layer
- Includes:
 - Strategies developed by technology: Artificial Intelligence
 - Execution of any game code
 - Underlying execution of non-game code: Operating System

 The four elements of the Dynamic Layer encompass everything that happens as the game is played

- The four elements of the Dynamic Layer encompass everything that happens as the game is played
- Ownership over the the Dynamic Layer is shared between the developers and the players

- The four elements of the Dynamic Layer encompass everything that happens as the game is played
- Ownership over the the Dynamic Layer is shared between the developers and the players
- Once players have played a game, the aftermath of that play becomes the Cultural Layer

- The four elements of the Dynamic Layer encompass everything that happens as the game is played
- Ownership over the the Dynamic Layer is shared between the developers and the players
- Once players have played a game, the aftermath of that play becomes the Cultural Layer
 - The topic of the next chapter